Bounding Sequence Extremal Functions with Formations

نویسندگان

  • Jesse Geneson
  • Rohil Prasad
  • Jonathan Tidor
چکیده

An (r, s)-formation is a concatenation of s permutations of r letters. If u is a sequence with r distinct letters, then let Ex (u, n) be the maximum length of any r-sparse sequence with n distinct letters which has no subsequence isomorphic to u. For every sequence u define fw(u), the formation width of u, to be the minimum s for which there exists r such that there is a subsequence isomorphic to u in every (r, s)-formation. We use fw(u) to prove upper bounds on Ex (u, n) for sequences u such that u contains an alternation with the same formation width as u. We generalize Nivasch’s bounds on Ex ((ab)t, n) by showing that fw((12 . . . l)t) = 2t − 1 and Ex ((12 . . . l)t, n) = n2 1 (t−2)!α(n) t−2±O(α(n)t−3) for every l > 2 and t > 3, such that α(n) denotes the inverse Ackermann function. Upper bounds on Ex ((12 . . . l)t, n) have been used in other papers to bound the maximum number of edges in k-quasiplanar graphs on n vertices with no pair of edges intersecting in more than O(1) points. If u is any sequence of the form avav′a such that a is a letter, v is a nonempty sequence excluding a with no repeated letters and v′ is obtained from v by only moving the first letter of v to another place in v, then we show that fw(u) = 4 and Ex (u, n) = Θ(nα(n)). Furthermore we prove that fw(abc(acb)t) = 2t + 1 and Ex (abc(acb)t, n) = n2 1 (t−1)!α(n) t−1±O(α(n)t−2) for every t > 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounding extremal functions of forbidden 0-1 matrices using (r, s)-formations

First, we prove tight bounds of n2 1 (t−2)! α(n)t−2±O(α(n)t−3) on the extremal function of the forbidden pair of ordered sequences (123 . . . k)t and (k . . . 321)t using bounds on a class of sequences called (r, s)formations. Then, we show how an analogous method can be used to derive similar bounds on the extremal functions of forbidden pairs of 0 − 1 matrices consisting of horizontal concate...

متن کامل

Bounding Functions and Rigid Graphs

A function f bounds graphs from above if there exists an infinite family of graph G, such that if G ∈ G then f(|VG|) = |EG| and for all nonempty subgraphs H of G we have that F (|VH |) ≥ |EH |. This paper considers the question: which functions bound graphs? keywords graphs, extremal graph theory AMS subject classification 05C99

متن کامل

Hyperinvariant subspaces and quasinilpotent operators

For a bounded linear operator on Hilbert space we define a sequence of the so-called weakly extremal vectors‎. ‎We study the properties of weakly extremal vectors and show that the orthogonality equation is valid for weakly extremal vectors‎. ‎Also we show that any quasinilpotent operator $T$ has an hypernoncyclic vector‎, ‎and so $T$ has a nontrivial hyperinvariant subspace‎.

متن کامل

Extremal Processes with One Jump

Convergence of a sequence of deterministic functions in the Skorohod topology d…‰0;?†† implies convergence of the jumps. For processes with independent additive increments the ®xed discontinuities converge. In this paper it will be shown that this is not true for processes with independent max-increments. The limit in d…‰0;?†† of a sequence of stochastically continuous extremal processes may ha...

متن کامل

On the Column Extremal Functions of Forbidden 0-1 Matrices

A 0-1 matrix is a matrix in which every element is either 0 or 1. The weight extremal function ex(n, P ) counts the maximum number of 1’s in an n × n matrix which avoids a pattern matrix P . The column extremal function exk(m,P ) counts the maximum number of columns that a matrix with m rows and k 1’s per column can contain such that the matrix avoids P . Set weight and column extremal function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2014